Abstract

This work reports on the effective sequestration of Eu(III) ions from aqueous solutions using three types of metal-organic frameworks (MOFs) constructed from benzene-1,3,5-tricarboxylic acid (H3BTC) linker and Ca2+, Cu2+, or Al3+ metal nodes. The MOFs possessed an exceptionally high Eu adsorption capacity of 635 (91% removal), 642 (92% removal), and 628 mg g−1 (90% removal) for Cu-BTC, Ca-BTC, and Al-BTC, respectively, at pH 7 for an initial Eu concentration of 350 mg L−1. The MOFs were hydrolytically stable and possessed a high Eu adsorption capacity in a wide pH range of 4–8. While the pseudo-second-order model explained the adsorption kinetics, the adsorption process followed the Langmuir-Freundlich isotherms. The analysis confirmed that the Eu adsorption process was governed by chemical interactions between the carboxylic acid/carboxylate group and Eu(III) ions via complexation or ion exchange mechanism. A multi-metal adsorption study confirmed a preferential adsorption behaviour for trivalent lanthanides over divalent cations due to comparatively stronger interactions between Ln3+ ions and carboxylate groups. The XPS findings suggested Eu−OOC and Eu(OH)3 formed over the MOFs' surface after Eu adsorption. These MOFs were effectively regenerated for multiple cycles using 0.1 mol L−1 EDTA solution. Thus, the study demonstrated low-cost MOFs with superior regeneration capabilities for the capture of Eu(III) ions from waste solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.