Abstract

Friction stir processing is a novel material fabrication technique. This study was undertaken in order to investigate a suitable set of friction stir processing parameters to form AL7075T651/TiN nano composite. A number of samples were produced by varying the process parameters, namely, tool-pin geometry, number of passes and the direction of tool rotation. The pin geometries employed include triangular, square and threaded taper; the passes were varied over two levels (i.e. 2 and 4) and the tool rotation was changed as clockwise and counter clockwise between the successive passes. The effect of these variations on the composite was quantified through several microstructural and mechanical tests. The increase in the number of passes was observed to improve various characteristics of the composite (i.e. distribution of TiN particles, grain refinement and mechanical properties). The effect of tool geometry, however, was associated with the choice of the number of passes. The change in the direction of tool rotation between the consecutive passes was witnessed to improve the distribution of TiN particles. From the X-ray diffraction analysis of the samples, the formation of several new phases was detected. These were found to have effect on the mechanical properties of the composite. A good trade-off among various properties of the composite (i.e. hardness, tensile strength and ductility) was realized when the friction stir processing was performed using square tool and employing four passes with simultaneously changing the direction of tool rotation between the successive passes. This study is the first report on the fabrication of AL7075T651/TiN nano composite through friction stir processing route.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call