Abstract

Femtosecond lasers enable materials processing with their notably characteristics, such as precision, high peak density, flexible, and minor thermal affected zone. Applications ranging from high precision micromachining to biological manipulation with no thermal damages are possibly executed via this technology. In this study, the three-dimensional molecular dynamics simulation associated with the parallel computation were utilized to explore the ablation mechanism, the trend between the femtosecond laser fluence density and laser ablation depth as well as affected zone. In addition, we also compared the ablation methods which were single ablation and superposited ablation machining processes. Moreover, the heat-affected zone effect was discussed. Ultimately, a femtosecond laser ablation manufacturing process simulation was implemented by the combination of laser fluence densities to demonstrate the feasibility of fabricating the metallic gratings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.