Abstract

Recently introduced DNA nanomolds allow the shape-controlled growth of metallic nanoparticles. Here we demonstrate that this approach can be used to fabricate longer linear metal nanostructures of controlled lengths and patterns. To this end, we establish a set of different interfaces that enable mold interactions with high affinity and specificity. These interfaces enable and control the modular assembly of mold monomers into larger mold superstructure with programmable dimension in which each mold monomer remains uniquely addressable. Preloading the molds with nanoparticle seeds subsequently allows the growth of linear gold nanostructures whose lengths are controlled by the DNA structure. Exploiting the addressability of individual mold monomers furthermore allows achievement of site-specific metallization, that is, to create defined metal patterns. We think that the introduced approach provides a useful basis to fabricate nanomaterials with complex shapes and material composition in a fully programmable and modular fashion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.