Abstract

A new method for synthesizing gold, nickel, and cobalt metal nanoparticles at room temperature from metal salts employing plasmid DNA in a toroidal topology as a sacrificial mold is presented. The diameter of the toroidal DNA drives the formation and size of the nanoparticle, and UV light initiates the oxidation of the DNA and concomitant reduction of the DNA bound metal ions. The nanoparticles were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), and electron diffraction (ED).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.