Abstract

Fungi secrete enzymes and proteins as reducing agents which can be used for the synthesis of metal nanoparticles from metal salts. Large-scale production of nanoparticles from diverse fungal strains has great potential since they can be grown even in vitro. In recent years, various approaches have been made to maximize the yield of nanoparticles of varying shape, size, and stability. They have been characterized by thermogravimetric analysis, X-ray diffractometry, SEM/TEM, zeta potential measurements, UV-vis, and Fourier transform infrared (FTIR) spectroscopy. In this review, we focus on the biogenic synthesis of metal nanoparticles by fungi to explore the chemistry of their formation extracellularly and intracellularly. Emphasis has been given to the potential of metal nanoparticles as an antimicrobial agent to inhibit the growth of pathogenic fungi, and on other potential applications.

Highlights

  • Of all the processes developed so far, the fabrication of metal nanoparticles by the biogenic methods employing plant extract are more popular, innocuous, inexpensive, and environmentally friendly as they do not leave hazardous residues to pollute the atmosphere [1,2,3,4,5,6]

  • Extracellular synthesis of nanoparticles involves the trapping of the metal ions on the surface of the cells and reducing them in the presence of enzymes, while intracellular synthesis occurs into the fungal cell in the presence of enzymes

  • The exact mechanism of intracellular synthesis of gold and silver nanoparticles is not known, but it is for sure that in the presence of fungi, they are formed on the surface of mycelia

Read more

Summary

Introduction

Of all the processes developed so far, the fabrication of metal nanoparticles by the biogenic methods employing plant extract are more popular, innocuous, inexpensive, and environmentally friendly as they do not leave hazardous residues to pollute the atmosphere [1,2,3,4,5,6]. Fungi secrete extracellular proteins which have been used to remove metal ions as nanoparticles. The other way of producing metal nanoparticles is biosorption where metal ions in the aqueous medium are bonded to the surface of the cell wall of the organisms.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.