Abstract

Mesoporous Silica Nanoparticles (MSNs) are nano-sized particles with a porous structure that offers unique advantages for drug delivery systems. The chapter begins with an introduction to MSNs, providing a definition of these nanoparticles along with a brief historical overview. The distinctive properties of MSNs, such as high surface area, tunable pore size, and excellent biocompatibility, are discussed, highlighting their potential in drug delivery applications. The synthesis methods for MSNs are presented, including template-assisted synthesis, sol-gel method, co-condensation method, and other approaches. The chapter also covers the characterization techniques used for evaluating MSNs, including morphological, structural, and chemical characterization, which are crucial for assessing their quality and functionality. The surface modification of MSNs is explored, focusing on the functionalization of surface groups, attachment of targeting ligands, and surface charge modification to enhance their interactions with specific cells or tissues. The chapter then delves into the diverse applications of MSNs, with a particular focus on drug delivery. The use of MSNs in cancer theranostics, drug delivery, imaging, biosensing, and catalysis is discussed, emphasizing their potential to revolutionize these areas. Furthermore, the toxicity and biocompatibility of MSNs are addressed, covering both in vitro and in vivo studies that evaluate their safety and efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.