Abstract

The present work discusses the synthesis, characterization, and environmental applications of graphene oxide (GO), melamine formaldehyde resin (MF), and melamine formaldehyde/graphene oxide composite (MGO) for the efficient removal of Pb2+ from aqueous medium via batch and column procedures. TGA, XRD, TEM, zeta potential, nitrogen adsorption/desorption, ATR-FTIR, and other characterization techniques revealed that MGO is characterized by a greater surface area (609 m2/g), total pore volume (1.0106 cm3/g), pHPZC (6.5), and the presence of various surface chemical functional groups. The synthesized solid adsorbents were used in both static and dynamic adsorption processes to remove Pb2+, with varying application parameters such as pH, starting concentration, adsorbent dosage, and shaking time in the case of static adsorption method. While through the column adsorption process the effects of column bed height, flow rate, and starting Pb2+ were taken into consideration. Results of the batch adsorption demonstrated that MGO had the highest Langmuir adsorption capacity (201.5 mg/g), and the adsorption fit the nonlinear Langmuir adsorption model and Elovich kinetic models. The adsorption of Pb2+ onto all prepared solid materials is endothermic, spontaneous, and physical in nature, as demonstrated by thermodynamic studies. Column adsorption of Pb2+ well fitted by Thomas and Yoon Nelson nonlinear adsorption models. MGO showed a maximum column adsorption capacity of 168 mg/g when applying 4 cm, 15 mL/min, and 150 mg/L as bed height, flow rate, and initial Pb2+, respectively. With only a 12.6% reduction in its adsorption capacity, column regeneration showed that MGO exhibited a high degree of reusability even after five cycles of adsorption/desorption studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.