Abstract
We describe the fabrication and characterization of matrix-addressable microlight-emitting diode (micro-LED) arrays based on InGaN, having elemental diameter of 20 μm and array size of up to 128 × 96 elements. The introduction of a planar topology prior to contact metallization is an important processing step in advancing the performance of these devices. Planarization is achieved by chemical-mechanical polishing of the SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> -deposited surface. In this way, the need for a single contact pad for each individual element can be eliminated. The resulting significant simplification in the addressing of the pixels opens the way to scaling to devices with large numbers of elements. Compared to conventional broad-area LEDs, the micrometer-scale devices exhibit superior light output and current handling capabilities, making them excellent candidates for a range of uses including high-efficiency and robust microdisplays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.