Abstract

In this paper, we report a facile approach to synthesize pure Magneli phase Ti4O7 nanostructures via solvothermal processing and subsequent thermal treatment. The one-dimensional nanostructure of Ti4O7 nanorods (1D Ti4O7 NRs) was characterized by powder X-ray diffraction (XRD), scanning electron microscope (SEM) and high-resolution transmission electron microscopy (HRTEM). The as-obtained Ti4O7 NRs, with an average diameter of 150 nm, were used as sulfur host to prepare Ti4O7 NRs/sulfur cathode for lithium-sulfur (Li-S) batteries. Electrochemical measurements showed that the as-synthesized Ti4O7 NRs can improve the electrochemical reaction kinetics during the charge-discharge processes. The initial discharge capacity of the Ti4O7 NRs/sulfur cathode was 930 mAh g−1, and the remaining capacity was 490 mAh g−1 after 500 cycles at 1C, much higher than that of acetylene black/sulfur cathode. Electrochemical impedance spectroscopy (EIS) demonstrated Ti4O7 NRs/sulfur decreases the charge transfer resistance. Moreover, Ti4O7 NRs/sulfur composite exhibits low electrode polarization accompanied by a high lithium ion diffusion coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.