Abstract

As the basic building block for photonic device integration, silicon nanophotonic waveguide requires low-loss propagation for high-performance ultra-compact photonic device. We experimentally study SiO 2 grown by two different methods (thermal oxidation and PECVD) as hard masks for Si nano-waveguides fabrication and study their effects on propagation loss. It was found that the denser and smoother quality of thermally grown SiO 2 will increase the etch selectivity of Si and reduce the line-edge roughness transferred to the Si nanowaveguide sidewall, hence giving a lower loss compared to having PECVD SiO 2 hard mask. With thermally grown SiO 2 as hard mask, the Si nano-waveguides loss can have a loss reduction as high as 5.5 times for a 650 nm wide nanowaveguide. Using thermally grown SiO2 as hard mask will allow the Si nano-waveguide to have as low a propagation loss as direct resist mask and enable III-V semiconductor on silicon via bonding for multifunctional photonic system on chip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.