Abstract

Typical anodes of solid oxide fuel cell consist of a cermet of electronic conductor such as Ni and oxygen ion conductor such as yttria-stabilized zirconia, and have porous structure to enlarge reaction sites. It has been recognized that volume expansion of the Ni species during redox cycle can damage the anode structure and that sintering of the Ni species results in degradation of power generation characteristics. One possible approach for lessening these undesirable effects is to reduce the amount of Ni in the anode, whereas reduced Ni amount in turn decreases the anodic reaction sites. In this study, Ni-SDC (samaria-doped ceria) cermet was prepared by changing SDC particle size and Ni content, and I-V and AC impedance measurement were conducted to evaluate the electrochemical processes that influence the performance of the anode by introducing ΔZ'spectra. It was found that large SDC particles were effective in reducing ohmic overpotential even with low Ni content, and that the conductivity change in the anode with Ni content can be explained by percolation theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.