Abstract

In this study, alumina-spinel composite hollow fibre membranes were fabricated from abundantly available aluminium dross waste, which can be commonly obtained from aluminium-producing factory. The hollow fibre membranes were successfully fabricated by using a combine phase inversion method and sintering technique. The effects of sintering temperatures on morphology, mechanical strength, and permeability of the hollow fibre membranes were systematically investigated. X-ray fluorescence (XRF) was used to analyze the composition of the aluminium dross waste, while x-ray diffraction analysis (XRD) were further studied to characterize the major crystalline phase of the sintered hollow fibre membranes. An increase in sintering temperatures resulted in densification of hollow fibre membrane, consequently induced the flux reduction. The presence of spinel in microstructural of hollow fibre assisted in decreasing the sintering temperature. As comparison to pure alumina membrane counterparts, this alternative ceramic hollow fibre membrane exhibited a comparable mechanical strength of 78.3-155.1 MPa with lower sintering temperatures ranging from 1350 ˚C to 1400 ˚C at ceramic loading of 40%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.