Abstract

Liquid-metal printed processes have been recently developed as a novel strategy to grow ultrathin 2D oxide materials, which are transferred from liquid-metal surfaces to substrates. In this study, we fabricated liquid-metal printing 2D tin oxide (SnO) nanosheets on SiO2/Si and glass substrates. A large lateral-sized 2D SnO nanosheets of >100 µm and a thickness of approximately 6.3 nm was fabricated. The 2D SnO nanosheets exhibited a strong optical absorption in the ultraviolet and violet region and its bandgap was estimated to be approximately 2.9 eV. The 2D SnO nanosheets on glass substrates with patterned gold electrodes generated a photocurrent under ultraviolet (UV) light irradiation, demonstrating a potential for optoelectronic applications such as UV detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.