Abstract

Microcellular structure endows polymeric foams with the improved mechanical properties, but the preparation of lightweight microcellular polyimide (PI) foams with a large size is challenging and inefficient, because of low gas solubility, high stiffness, and an extremely long saturation time. In this study, PI foam was prepared by solid-state microcellular foaming technology with the compressed CO2 as a physical blowing agent and tetrahydrofuran as coblowing agent. The presence of coblowing agent was verified to increase the gas sorption of PI, causing a dramatic increase in the expansion ratio of microcellular PI beads from 2.9 to 15.7. Using a novel compression molding process, the prepared PI foams were molded into the 3-D shaped products. Before the molding, the foamed PI beads were coated by poly(ether imide) (PEI)/chloroform solution. The contact angle tests indicated that PEI/chloroform could infiltrate well PI foams’ surface, which facilitated the formation of strong interbead bonding between bead foams. The thickness of the coated PEI layer and the interbead bonding regions were the important parameters to adjust the bending and compression properties of the molded PI foam (MPI) product. The experimental results indicated that the bending strength and compression strength (at 10% strain) of MPI sample with density of 137.7 kg/m3 were 1.27 and 1.59 MPa, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.