Abstract

organic light‐emitting diode (OLED) can enable a greater artificial contrast ratio and viewing angle compared to liquid crystal display (LCD) because OLED pixels directly emit light. There is a shortcoming that the internal quantum efficiency can reach values close to 100%, but about 80% light disperses because of the difference among the refractive indices of the substrate, anode, indium tin oxide (ITO) film, and air. In this paper, three dimensions aspherical microlens arrays (3D A‐MLAs) with substrate modifications are developed to simulate the optical luminous field by using FRED software. This study modified parameters of 3D A‐MLAs such as the diameter, fill‐factor, aspect ratio, dry etching parameters, and electroforming rates of microlens to improve the extraction efficiency of the OLED. In dry etching, not only the aspect ratio with better extraction rate can be obtained by reactive ion etching (RIE) dry etching, but also an undercutting phenomenon can be avoided. The dimensions of 3D A‐MLAs can be accurately controlled in the electroforming process used to make a nickel‐cobalt (Ni‐Co) metal mold to achieve the designed dimensions. According to the measured results, the average luminance efficacy of the OLEDs with 3D A‐MLAs can be enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.