Abstract
Open-cell porous aluminum with a controlled pore structure can be fabricated by sintering and dissolution process. To overcome the size limitation of porous aluminum fabricated by the sintering and dissolution process, an enhanced friction powder compaction (FPC) process for fabricating porous aluminum was proposed. In this process, the rotating tool plunged into the powder mixture and die during the FPC process is made to traverse perpendicular to the direction of plunging. It was found that long porous aluminum can be fabricated with a length equal to the tool traversing length. By scanning electron microscopy (SEM) observation of the pore structures, it was found that although the region in the vicinity of the traversing rotating tool had an elongated pore structure, almost the entire sample had a pore structure that was similar to the NaCl morphology, regardless of the traversing direction. From compression test, fabricated porous aluminum exhibited ductile fracture, which is considered to be attributed to the good bonding between aluminum particles. [doi:10.2320/matertrans.M2013318]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.