Abstract

The ability to process large grain, uniform high temperature superconducting ceramics that exhibit high critical current densities at 77 K is essential if the enormous potential of these materials for a range of permanent magnet-type applications is to be realized. We report a study of the fabrication of large grain YBa2Cu3O7−δ by seeded peritectic solidification in which key processing parameters such as the peritectic melting process, the seed-YBCO reaction, and the YBCO solidification kinetics are investigated in detail. Evolution of the sample microstructure during various stages of the growth process, in particular, has been studied extensively. The superconducting properties of specimens cut from different regions of large grain samples have been measured using vibrating sample magnetometry, and the results correlated with the microstructure of the materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.