Abstract

Large GaN templates with high flatness (i.e., negligible wafer bowing and smooth as-grown surfaces) and low threading dislocation densities (TTDs) were fabricated by a novel two-side hydride vapor-phase epitaxial (HVPE) growth, beginning with deposition of polycrystalline GaN on the rear side of the wafer. Appropriate gas-flow management realized by our homemade HVPE system permitted the growth of a GaN layer with a smooth as-grown surface and excellent thickness uniformity on the front surfaces of 4- or 6-inch patterned sapphire substrates (PSSs). However, when the grown thickness exceeded 20μm, single-side HVPE-growth induced fractures in GaN crystals. The fracture resistance of the GaN increased markedly when it was in a cleavage-resistant polycrystalline form (poly-GaN), permitting its growth to a thickness of 100μm. In the presence of a back-side poly-GaN layer, extremely thick GaN crystal layers could be grown on the front side without fractures. An 80-μm-thick GaN template fabricated by two-side growth on a 4-inch PSS had a device-quality surface, negligible bowing, and low TDD (7×106cm−2). Issues of high fabrication costs, unavailability of large-size wafers, and large off-angle variations associated with native GaN wafers could be overcome by using our high-quality GaN templates as alternative substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.