Abstract

LaFeO3-nitrogen deficient g-C3N4 (LaFeO3-g-C3N4-H) heterostructure has been fabricated obtaining thermal polymerization of acetic acid-treated melamine followed by incorporation of perovskite-type LaFeO3 onto the graphitic carbon nitride nanosheets (g-C3N4) using La(NO3)3·6H2O and Fe(NO3)3·9H2O as precursors. The as-synthesized nanocomposite was investigated using Fourier Transform Infrared Spectroscopy (FT-IR), powder X-ray diffraction (XRD), UV–Vis Diffuse Reflection Spectroscopy (UV–Vis DRS), Scanning Electron microscope (SEM), and Transmission Electron microscope (TEM). The findings of the characterization study revealed the successful incorporation of LaFeO3 on g-C3N4-H nanosheets. The band gap energy of LaFeO3-g-C3N4-H heterojunctions was found to be active in the visible light region. The LaFeO3-g-C3N4-H ability to degrade Rhodamine B (RhB) dye in an aqueous solution was investigated under sunlight illumination. The results of photocatalytic degradation activity showed that LaFeO3-g-C3N4-H photocatalyst haspresented the highest photocatalytic efficiency of 99.5% after 60 min under sunlight irradiation. The remarkable photocatalytic activity can be attributed to the defect structure of g-C3N4 and the construction of heterojunction. In addition, LaFeO3-g-C3N4-H showed promise recyclability after 5 cycles with slight activity reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call