Abstract

Iron-nickel alloys exhibit lots of attractive properties, such as magnetic and conductivity properties, as well as excellent corrosion resistance. These properties make them suitable for making microcomponents. This paper presents the fabrication of iron-nickel alloy microcomponents (microchannel, microwell, micromixer, and microgear) from an ethanol-based composite slurry by centrifuge-assisted micromolding. Polydimethylsiloxane (PDMS) molds were replicated from microstructured silicon masters. A stable ethanol-based iron-nickel composite slurry with a high solid content of 85 wt% was prepared and filled into the PDMS molds by the aid of centrifugation. After drying, green microcomponents were demolded and followed by sintering in hydrogen atmosphere. Sintering profile was established by TGA. The green and sintered microcomponents had good shape retention and were free of cracks. The highest density of the microcomponents (97.3 RD%) was achieved at 1070 °C; the corresponding microhardness and Young’s modulus were 167.8 HV and 175.4 GPa, respectively. The linear shrinkage increased with sintering temperature and the maximum value was about 12.5 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.