Abstract

The fabrication of inflated Layer-by-Layer (LbL) microcapsules with a unique ‘bead-in-a-capsule’ morphology is presented. Currently, the fabrication of LbL microcapsules using conventional aqueous LbL techniques usually results in microcapsules with a two-phase system (LbL capsular wall with an air, liquid, solid or hydrogel core). Here, we present the fabrication of inflated LbL microcapsules with a unique three-phase system (LbL capsular wall, hydrogel microbead in an aqueous core) by using the Reverse-Phase LbL (RP-LbL) technique. The RP-LbL technique is performed in an organic solvent and allows encapsulation of water-soluble templates and molecules with high efficiency. Firstly, the RP-LbL technique is used to coat polymer layers onto agarose microbeads containing TRIS buffer for the formation of LbL capsular walls onto the microbeads and to minimize out-diffusion of encapsulated TRIS. Next, the polymer-coated agarose microbeads are transferred from an organic to an aqueous solvent where the TRIS molecules induce an osmotic pressure in the microcapsules' interior. This pressure drives the inflation of the LbL microcapsules that causes the expansion of the LbL capsular walls. Fluorescence staining reveals that the inflated LbL microcapsules consist of an agarose microbead suspended within the aqueous interior of the capsule but still attached to the LbL capsular wall at one point; thereby displaying a ‘bead-in-a-capsule’ morphology. It was demonstrated that the degree of inflation depends on the concentration of pre-loaded TRIS and the number of coated polymer layers. Also, ADOGEN® 464 (a cationic surfactant) is required for the fabrication of the inflated LbL microcapsules. The mass of dextran macromolecules (65–2000 kDa) diffusing through the LbL capsular wall had decreased by at least 49% after expansion of the capsular wall. Inflated microcapsules were shown to be capable of controlling the distribution of two different materials internally. Hence, it is possible that inflated microcapsules can permit localized control over chemical or enzymatic reactions for future uses in biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.