Abstract

Abstract 304 austenitic stainless steel reinforced by Al2O3 particles was prepared by microwave assisted self-propagating high temperature synthesis process using the Fe2O3Cr2O3NiOAlFe reaction system. Furthermore, effects of mechanical activation of the reactants and the addition of 21.2 wt.% extra Al to the chemical composition of the reactants on the chemical composition of the produced stainless steel was investigated. Atomic absorption spectroscopy analysis results indicated that by the addition of extra Al to the reactant mixture and using 30 minute mechanical activation, stainless steel containing 17.27 wt.% Cr and 7.73 wt.% Ni could be produced with its chemical composition very close to the chemical composition of 304 stainless steel. X-ray diffraction analysis showed that the stainless steel contains nanostructured austenite and ferrite phases. Also microstructural characterizations indicated that there is a uniform distribution of black particles in the steel matrix. Energy dispersive spectroscopy analysis showed that these particles are composed of Al and O elements while the matrix contains Fe, Cr and Ni elements. The presence of Al2O3 particles and nanostructure matrix improved the hardness and therefore the wear properties of the composite in comparison with the wrought 304 stainless steel plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.