Abstract

Hydroxyapatite (HA) thin films were prepared on a zirconia (ZrO2) substrate using a sputtering technique, and the film was also coated on a titanium (Ti) substrate for comparison. The coated films were recrystallised using a hydrothermal treatment to reduce film dissolution. The films were then characterised by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The osteocompatiblity of the films was evaluated by investigating the alkaline phosphatase (ALP) activity and the size of the bone formation area of osteoblast cells. In the XRD patterns of the as-sputtered films on the ZrO2 substrate, there are no peaks except for those from the ZrO2 substrate. After the hydrothermal treatment, HA peaks appeared in the patterns. Nanoparticles (less than 20 nm) were observed on the ZrO2 substrates in the SEM images of the as-sputtered films. After the hydrothermal treatment, particles of 20-40 nm were observed on the film, whereas the HA film on the Ti substrate was covered by a larger number of globular particles (20-60 nm). In the osteoblast cell cultures, the ALP activity and bone formation area on the HA films on both the ZrO2 and Ti substrates increased after the hydrothermal treatment of the films, and the values for the ZrO2 substrate were higher than those for the Ti substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.