Abstract
Hydroxyl-terminated polybutadiene (HTPB)-based piezoelectric polymer (m-HTPB) is prepared for the first time by functionalized branch chain modification strategy. In the presence of HTPB with >98.8% cis-1,4 content, the C=C bond partly breaks down, and functionalized acetylferrocene groups are introduced to the cis-1,4 polybutadiene branch chain, retaining the high cis-1,4 content of HTPB. The whole process is conducted under mild conditions, without complicated manipulations. The microstructure and molecular weight of m-HTPB are characterized by Fourier-transform infrared (FTIR) spectra, 1H or 13C nuclear magnetic resonance spectrum (NMR), and gel permeation chromatography (GPC). The thermal properties of HTPB and m-HTPB are determined by differential scanning calorimetry (DSC). Electrochemical investigations reveal that m-HTPB exhibits higher conductance compared with HTPB. The m-HTPB flexible piezoelectric polymer is further used for in situ and real-time pressure monitoring. This simple and effective strategy provides a promising polymeric material for flexible piezoelectric sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.