Abstract
Bioceramics, while offering excellent biocompatibility, are often compromised by their fragility and brittleness, especially under wet conditions. Even though recent hybrid processes combining biocompatible polymers and bioceramics have shown promise, complete mitigation of these challenges remains elusive. In this research, a biomimetic process was employed to mimic the structure of biological bone tissue. This led to the development of block materials composed of octacalcium phosphate (OCP) and sodium polyacrylic acid (PAA-Na) that display flexibility and resilience in wet conditions. Adjusting the PAA-Na concentration enabled the OCP-PAA-Na blocks to demonstrate superior mechanical strength when dry and increased flexibility when wet. Notably, these blocks expanded in aqueous solutions while preserving their structure, making them ideal for oral surgeries by preventing issues like blood flooding from implanted areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.