Abstract

In this paper, the hydrangea-shaped Bi2WO6/ZIF-8 (BWOZ) visible light photocatalysts have been prepared via a facile synthetic strategy for the first time. The constructed BWOZ composites were systematically studied by a series of characterization techniques. The SEM results manifested the octahedral ZIF-8 coated the flower-like Bi2WO6 uniformly and the composition of BWOZ composites had been confirmed by XPS measurement. And the photocatalytic activity was evaluated by eliminating methylene blue with the help of visible light. The results showed that 7%-BWOZ (7.0 wt% Bi2WO6) exhibited better photodegradation capability than pure Bi2WO6 and ZIF-8. Compared with Bi2WO6, the photocatalytic degradation of methylene blue by 7%-BWOZ could reach 85.7%. In addition, the pseudo-first-order kinetic constant of 7%-BWOZ was 23.00 and 1.61 times that of pristine Bi2WO6 and ZIF-8, respectively. The improved photocatalytic ability of BWOZ systems may be due to the construction of heterojunctions between Bi2WO6 and ZIF-8, which resulted in the rapid separation of photogenerated carriers. Additionally, the specific surface area of the formed BWOZ system was also improved in comparison with the flower-shaped Bi2WO6, and thus more active sites could be provided to contact with methylene blue molecules, thereby achieving better removal capacity. Moreover, trapping experiments and electron spin resonance results further illustrated that the coexistence of multiple free radicals realized efficient degradation of methylene blue. More importantly, the photocatalytic property of the 7%-BWOZ composite remained even after three cycles. Furthermore, a feasible photodegradation mechanism was also explored in depth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call