Abstract

Large scale hollow ZnO spheres were prepared by a solvothermal method with the help of the solvent. And ZnS nanoparticles were successfully fabricated on the surface of ZnO via a hydrothermal process. These heterostructured ZnO/ZnS core/shell particles are around 1-2 microm in diameter, the ZnS shell formed on the surface of hollow ZnO sphere is comprise of the primary crystals about 30 nm in diameter. The products prepared were characterized by field emission scanning electron microscope (FE-SEM), X-ray powder diffraction (XRD), transmission electron microscope (TEM), and photo-luminescence spectroscope (PL). Theoretical calculation and experimental results have demonstrated that the combination of ZnO and ZnS (two wide band gap semiconductors) could yield a novel material with the photoexcitation threshold energy lower than the individual components. The electron transfers between ZnO core and ZnS shell, which strongly affect the photoluminescence and photocatalytic performances. The photocatalytic activities of the products were evaluated by methyl orange degradation as a probe reaction. The relationship of ZnO/ZnS core/shell particles as excellent photocatalyst could be anticipated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call