Abstract

A preparation method for hollow particles composed of silica shell containing gadolinium compound (GdC) is proposed. GdC nanoparticles with an average size of 40.5 ± 6.2 nm were prepared with a homogeneous precipitation method at 80°C using 1.0 × 10−3 M Gd(NO3)3 and 0.5 M urea in the presence of 2.0 × 10−4 M ethylenediaminetetraacetic acid disodium salt dihydrate. Silica-coated GdC (GdC/SiO2) nanoparticles with an average size of 100.9 ± 9.9 nm were fabricated with a sol-gel method at 35°C using 5.0 × 10−3 M tetraethylorthosilicate, 11 M H2O, and 1.5 × 10−3 M NaOH in ethanol in the presence of 1.0 × 10−3 M GdC nanoparticles. The GdC/SiO2 particles were aged at 80°C in water after replacement of solvent of the as-prepared GdC/SiO2 particle colloid solution with water, which provided diffusion of GdC into the silica shell and then formation of a hollow structure. The hollow particle colloid solution revealed good MRI properties. A relaxivity value for longitudinal relaxation time-weighted imaging was as high as 3.38 mM−1 · s−1 that attained 80% of that for a commercial Gd complex contrast agent.

Highlights

  • The combination of nanotechnology and biological science has been created a new path for the researchers to exploit in various biological fields

  • Tauc plot is shown in Fig. 1b and the band-gap energy was calculated as 2.8 eV for zinc oxide nanoparticles (ZnO NPs) synthesized using B. tomentosa leaf extract which was in good agreement with the result reported by Khuili et al [17]

  • Zinc oxide nanoparticles were successfully synthesized by biogenic route using B. tomentosa leaf extract

Read more

Summary

Introduction

The combination of nanotechnology and biological science has been created a new path for the researchers to exploit in various biological fields. The alternative method to synthesize nanoparticles in an eco-friendly, biocompatible, safe, and cost-effective is green approach, which allows large-scale production of nanoparticles through bacteria, fungi, algae, and plants Different plant parts such as root, stem, leaf, flowers, and fruits are rich in phytochemical substances and act as a stabilizing and reducing agent in the production of nanoparticles [8,9,10]. Tauc plot (αhν versus hν) is shown in Fig. 1b and the band-gap energy was calculated as 2.8 eV for ZnO NPs synthesized using B. tomentosa leaf extract which was in good agreement with the result reported by Khuili et al [17]. Due to the presence of alkaloids, terpenoids, flavonoids, tannins, carbohydrates, sterols, saponins, proteins, and amino acids in B. tomentosa leaf extract showed potential bioreducing activity and bactericidal activity against the tested bacteria which could be useful for biomedical applications

Conclusion
Compliance with ethical standards
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.