Abstract

The separation layer prepared by the conventional coating-crosslinking method is typically thick and prone to forming defective macropores, significantly affecting the water permeability and dye/salt separation performance of membranes. This work presented a novel method to prepare hollow fiber composite membranes for dye/salt separation based on the opposite transmission reaction of crosslinker. In this method, the macromolecule in situ reacted with a small‐molecule crosslinker at the openings of membrane pore channels, forming a separation layer with discontinuous sheet-like and granular structure. Compared to the conventional forward coating-crosslinking method, the separation layer prepared by the opposite transmission reaction method exhibited an ultra-thin thickness of 29.1 nm. Consequently, the composite membrane exhibited a high water permeability of 72.7 L·m−2·h−1·bar−1, which was 2.3 times higher than that of conventional methods. Moreover, the prepared composite membrane presented a more uniformed pore structure, completely retaining the VBB (100%) with a low Na2SO4 rejection of 4.3%, demonstrating excellent dye/salt separation performance. Additionally, the prepared composite membrane exhibited superior anti-fouling properties compared to that prepared by the conventional method. Therefore, the opposite transmission reaction method proposed in this study held promising applications in the preparation of hollow fiber composite membranes for efficient dye/salt separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.