Abstract

A new self-aligned emitter–base metallization (SAEBM) technique with wet etch is developed for high-speed heterojunction bipolar transistors (HBTs) by reducing extrinsic base resistance. After mesa etch of the base layer using a photo-resist mask, the base and emitter metals are evaporated simultaneously to reduce the emitter–base gap (SEB) and base gap resistance (RGAP). The InP/InGaAs/InP double heterojunction bipolar transistor (DHBT) fabricated using the technique has a reduced RGAP, from 16.48Ω to 4.62Ω comparing with the DHBT fabricated by conventional self-aligned base metallization (SABM) process. Furthermore, we adopt a novel collector undercut technique using selective etching nature of InP and InGaAs to reduce collector–base capacitance (CCB). Due to the reduced RGAP, the maximum oscillation frequency (fmax) for a 0.5μm-emitter HBT is improved from 205GHz to 295GHz, while the cutoff frequency (fT) is maintained at around 300GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call