Abstract

GeSn is a promising material for the fabrication of on-chip photonic and nanoelectronic devices. Processing techniques dedicated to GeSn have thus been developed, including epitaxy, annealing, ion implantation, and etching. In this work, suspended, strain-relaxed, and high-quality GeSn microdisks are realized by a new approach without any etching to GeSn alloy. The GeSn alloy was grown on pre-patterned Ge (001) substrate by molecular beam epitaxy at low temperatures. The transmission electron microscopy and scanning electron microscopy were carried out to determine the microstructures of the GeSn samples. The microdisks with different diameters of Ge pedestals were fabricated by controlling the selective wet etching time, and micro-Raman results show that the microdisks with different dimensions of the remaining Ge pedestals have different extents of strain relaxation. The compressive strain of microdisks is almost completely relaxed under suitable conditions. The semiconductor processing technology presented in this work can be an alternative method to fabricate innovative GeSn and other materials based micro/nano-structures for a range of Si-compatible photonics, 3D-MOSFETs, and microelectromechanical device applications.

Highlights

  • Germanium-tin (GeSn), a complementary metal-oxidesemiconductor (CMOS) compatible group IV material, has drawn significant attention in recent years for its applications in electronics and optoelectronics

  • The wafers were dried by blowing dry N2 and quickly loaded into the ultrahigh vacuum (UHV) chamber of plasma-enhanced chemical vapor deposition (PECVD) and annealed at 300 °C for 20 min to completely outgas

  • To confirm the Sn concentration of GeSn alloy, secondary ion mass spectrometry (SIMS) measurement was completed as shown in the inset of Fig.3a

Read more

Summary

Introduction

Germanium-tin (GeSn), a complementary metal-oxidesemiconductor (CMOS) compatible group IV material, has drawn significant attention in recent years for its applications in electronics and optoelectronics. In the case of GeSn alloy grown on strain-relaxed Ge virtual substrate or Ge substrate, the highest quality of GeSn is expected to be achieved in the pseudomorphic, or fully-strained condition which can avoid the formation of misfits and threading dislocations. Such GeSn alloy is compressively strained (~ 0.15% per 1% Sn) and this epitaxy-induced strain negates the effect of alloying Sn with Ge for bandgap conversion. A much higher Sn content of 17% for pseudomorphic GeSn epi-layer on Ge (001) [23] is required to achieve the direct bandgap, leading to extremely high challenges for epitaxy and low material quality.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call