Abstract

Although inorganic silica-based and polymeric micron-sized spheres have widely been explored as column packing materials in high performance liquid chromatography (HPLC), they are still suffering the problems of either alkali corrosion of silica or polymer swelling. It is still necessary to search simple approaches for fabrication of monodisperse micron-sized hybrid particles as packing materials in HPLC. A novel kind of silicon-containing polyacrylate microspheres was designed and fabricated via two-step swelling and photo-initiated polymerization approach using 3-(allylpropylsilane) propyl acrylate (TAPA) containing both acrylate and vinyl groups and trimethylolpropane triacrylate (TRIM) as precursors. After carefully optimizing the fabrication conditions, the monodisperse micron-sized microspheres could be acquired as chromatographic packing, exhibiting excellent mechanical stability and reproducibility. Due to existence of electron-rich vinyl groups, three kinds of thiols such as octadecanethiol (ODT), dithiothreitol (DTT) and trimethylolpropane tris(3-mercaptopropionate) (TTMP) were facilely anchored onto the surface of microsphere via photo-initiated thiol-ene click reaction. They were applied in the separation of small molecules by cLC-UV and complex biosamples by cLC-MS/MS. A total of 6691 unique peptides from 1771 unique proteins was identified by ODT-modified microsphere, which was higher than those by unmodified and DTT/TTMP-modified poly(TAPA-co-TRIM) microspheres. It was expected this kind of hybrid microspheres can be further modified and widely applied in chromatographic field, offering great potential in commercialization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.