Abstract

Designing and fabricating high-performance transparent conductive oxides (TCOs) is an attractive area for optoelectronic devices that require both high transparency and electrical conductivity. In this study, we introduce a hydrogen doping of indium oxide (IHO) as a TCO material with enhanced transparency while maintaining high conductivity by optimizing the carrier mobility, carrier concentration, and thickness. The typical IHO with a thickness of 200 nm exhibits a relatively lower carrier concentration (~2.10*1020 cm−3), compared to the traditional TCO like indium tin oxide and results in a higher NIR transmission of over 55% at 2500 nm, while the high carrier mobility of 87 cm2 V−1 s−1 endows it a lower sheet resistance of 15 Ω/sq. Our research provides valuable insights into the TCO and can be a general strategy to enhance light utilization for energy-efficient optoelectronic devices. Our work provides valuable insights into how the properties of TCOs can be tuned by controlling their microstructure and doping. The results show that hydrogen doping is an effective strategy to achieve the desired optical and electrical characteristics for efficient utilization of light in optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.