Abstract

Cloisite 30B as a modified kind of nanoclay was utilized for the formation of 3D network based on novolac resin with high thermal stable properties. Two types of phenolic resins including neat novolac (NR) and modified novolac resin were used to create a compatible matrix with nanoclay. For this purpose, NR modified with (3‐chloropropyl)triethoxysilane (CPTES) to form SiNR. For improvement of thermal behaviors, Cloisite 30B was dispersed in matrix via ultrasonic waves and cured with hexamethylenetetramine (HMTA) to form 3D network. X‐ray diffraction (XRD) analysis was used to measure the d‐spacing in intercalated systems and results indicated the optimum amount of clay for appropriate thermal properties. Investigation of the thermal properties of the samples by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed that the presence of Cloisite 30B in matrix resulted in much higher thermal stability and char yield with respect to modification of novolac resin originated from formation of 3D Si–O–Si network. Also, cured modified resin and its nanocomposites showed much higher thermal stability than cured NR and its nanocomposites. Such nanocomposite materials with high thermal stability have potential applications in advanced fields such electronic, industrial molds, coatings, adhesives, and aerospace composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.