Abstract

A series of polyimide (PI)/SiO2 aerogel microspheres were prepared by using polyamide acid salt and hydrolyzed tetraethyl orthosilicate based on the reverse-phase emulsion method. Then, PI/SiO2 aerogel microspheres were carbonized and etched to obtain carbon aerogel microspheres (CAMs). Scanning electron microscope, transmission electron microscope and nitrogen isothermal adsorption were used to characterize the micro-morphology and pore structure of the microspheres; and electrochemical workstation was used to test the electrochemical performance of the CAMs. The results showed that CAMs with different pore structures and specific surface area were obtained by adjusting the content of SiO2. Highest specific surface area of 1166.9 m2 g−1 and a total pore volume of 1.2369 cm3 g−1 were achieved at a SiO2 content of 50%. When used as the electrode materials for supercapacitors, these CAMs demonstrated a maximum specific capacitance of 125.1 F g−1 in a three-electrode system and a maximum capacitance of 53.3% at 30 A g−1. This article provides a new strategy for the preparation of CAMs with high specific surface area by using linear PI precursor and SiO2 support skeleton.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.