Abstract
X-ray imaging is used in many applications such as medical diagnosis and non-destructive inspection, and has become an essential technologies in these areas. In one image technique, X-ray phase information is obtained using X-ray Talbot interferometer, for which X-ray diffraction gratings are required; however, the manufacture of fine, highly accurate, and high aspect ratio gratings is very difficult. X-ray lithography could be used to fabricate structures with high precision since it uses highly directive syncrotron radiation. Therefore, we decided to fabricate X-ray gratings using X-ray lithography technique. The accuracy of the fabricated structure depends largely on the accuracy of the X-ray mask used. In our research, we combined deep silicon dry etching technology with ultraviolet lithography in order to fabricate untapered and high precision X-ray masks containing rectangular patterns. We succeeded in fabricating an X-ray mask with a pitch of 5.3 μm. The thickness of the Au absorber was about 5 μm, and the effective area was 60 × 60 mm2, which is a sufficient size for phase tomography imaging. We demonstrated the utility of the Si dry etching process for making high precision X-ray masks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.