Abstract

The design and fabrication of high frequency single element ultrasonic transducers present a multitude of challenges for the transducer engineer, from size constraints to electrical impedance matching. This paper discusses the trade-offs involved in procedures used to fabricate lithium niobate (LiNbO/sub 3/) and lead titanate (PbTiO/sub 3/) transducers in the 25 MHz to 75 MHz range. Transducers of varying dimensions were built according to an f-number range of 2-3.5. Desired focal depths were achieved with use of either an acoustic lens or a spherically focused piezoceramic. Silver epoxy backing with an acoustic impedance of approximately 5.9 MRayls was used in all designs. All transducers were designed around a 50/spl Omega/ send and receive circuit. Electrical tuning of the transducer to the receive circuitry was achieved by using an RF transformer and/or a length of coaxial cable. All transducers were tested in a pulse-echo arrangement using a Panametrics 5900PR pulser, a Wavetek function generator and a LeCroy digital oscilloscope. The bandwidth, insertion loss, and depth of focus were measured. Numerous transducers were fabricated with -6 dB bandwidths ranging from 40% to 74%, and two-way insertion loss values ranging from -14 dB to -28 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.