Abstract

ABSTRACTi-ZnO layers were deposited as diffusion barriers fabricated by RF sputtering on stainless-steel substrates (SUS430, matches with AISI SUS24). It was found that the addition of ZnO layer between stainless-steel substrate and Mo back contact film deplete diffusion of metal ions from substrate and reduce recombination at CIGS layer, as identified by an SIMS depth profile, QE and C-V measurements. With such diffusion barriers, the efficiency, open-circuit voltage, short-circuit current and fill factor of CIGS solar cells all increased, compared to reference cells without diffusion barrier. For the better device performance, Na was supplied during Mo back-contact layer deposition by co-sputtering of the target, including Na-source. Efficiencies of cells were increased with increasing the quantity of Na source. Unlike barrier thickness effect, short circuit current was reduced and open circuit voltage, fill factor were increased with increasing Na-source, and achieved 12.6% efficiency without AR(anti-reflection) coating. The relationship and causality between these results and the Na-doping were analyzed using C-V measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.