Abstract
We propose a facile method for the fabrication of high-aspect-ratio (HAR) fused silica microstructures with large depths using Bessel-beam femtosecond laser direct writing followed by selective chemical etching. First, laser-modified micropatterns with tunable aspect ratios are created in glass using backside Bessel laser irradiation. Then, surface and embedded glass microstructures are formed by selective removal of laser-modified regions through chemical etching. To demonstrate the capability of the proposed method, a vertical surface trench with an aspect ratio of ∼98, a depth of 2.82 mm, and a tapered angle of only ∼0.16°, and a series of periodic column array structures with 3D tunable feature sizes have been processed. Moreover, 3D multi-layer fabrication of embedded microchannels with HAR features has been demonstrated. Compared with conventional Gaussian-beam laser pulses, the proposed Bessel-beam method exhibits superior performance for ultrafast laser manufacturing of HAR glass microstructures with large depths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.