Abstract

Ultraprecision mold machining combined with precision glass molding is the most promising technology for the mass production of glass microlens arrays (MLAs). However, fabricating an MLA with a high aspect-ratio (AR) (ratio of height to aperture), submicron scale profile accuracy, nanoscale surface finish, and good consistency remains a considerable challenge. A local spiral diamond milling (LSDM) method is proposed to generate a high AR MLA on a nickel-phosphorous (Ni-P) plated mold. A spiral toolpath generation algorithm that considers the tool edge radius and performs profile error (PV) compensation is developed. Each lenslet at any local position can be precisely machined by controlling the servo motions of the three translational axes. Then, the entire MLA can be generated by shifting the toolpath to go through the centers of all lenslets according to the MLA layout. The tool parameters are optimized to avoid local and global tool interference during machining. The generated toolpath provides steady slide axis movements to avoid dramatic changes in cutting speed and acceleration. An MLA with an AR of 0.166 is fabricated. The results show that the fabricated mold and the molded lenses have a profile accuracy (PV) of less than 1 μm and a surface roughness (Ra) of less than 14 nm. The cross-sectional profiles indicate that the fabricated MLA has high machining consistency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call