Abstract

Advanced integrated electrode materials with designedcore–shell nanostructureplay a crucial role for the application in alternative energy storage system. Herein, hierarchical MoO3@NixCo2x(OH)6x core–shell arrays were equably grown on face of carbon cloth after a series of hydrothermal growth and electrochemical deposition processes. This core–shell arrays structure can not only provide large electroactive surface areas and high speed ion transport paths, but also keep the material structure stable during the process of redox reactions. Thus MoO3@NixCo2x(OH)6x displays excellent electrochemical performance (4.7 F cm−2 at 10 mA cm−2). Moreover, the asymmetric supercapacitor is assembled with MoO3@NixCo2x(OH)6x and carbon nanotubes, which delivers a maximal energy density of 0.50 mWh cm−2 at 4.25 mW cm−2, high specific capacitance and superior cycling stability (94.5% capacitance retention after 5000 cycles). We believe that MoO3@NixCo2x(OH)6x arrays could be a great prospective candidate energy storage materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.