Abstract

The cost-effective fabrication process for high-aspect-ratio microstructures using X-rays depends largely on the availability and quality of X-ray masks. The fabrication of X-ray masks using commercially available graphite sheet stock, as a mask membrane is one approach that is designed to reduce cost and turnaround time. Rigid graphite offers unique properties, such as moderate X-ray transmission, fairly low cost, electrical conductivity, and the ability to be used with either subtractive or additive processes [1, 2]. This paper will demonstrate the potential of a cost-effective, rapid prototyping of high-aspect-ratio microstructures (HARMs) using graphite masks. The graphite wafer accommodates both the intermediate mask and the working mask. In order to allow a direct comparison of the graphite mask quality with other X-ray masks, the primary pattern was derived from a Ti X-ray mask using soft X-ray lithography (XRL).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.