Abstract

An efficient and bio-based alginate pillared hydrotalcite (SA@LDHs) was fabricated via calcination-reconstruction manner with sodium alginate (SA) and hydrotalcite (LDHs-C), and used as novel flame retardant for polypropylene (PP). The morphologies and combustion properties of SA@LDHs and its hybrid with PP composites (PP/SA@LDHs) had been characterized by SEM, TGA, cone calorimetry, LOI and UL-94 measurements. With 30 wt% loading, the SA@LDHs achieved a LOI value of 30.9 % and a UL-94 V-0 rating, whereas the LDHs-C exhibited only LOI value of 27.6 % and a UL-94 V-1 rating. The peak heat release rate, total heat release and total smoke production of PP/SA@LDHs were 260.8 kW m−2, 61.3 MJ m−2 and 8.2 m2, respectively, which presented declines of 69.2 %, 42.8 % and 32.2 % compared with those of Neat PP. These improvements could be attributed to the presence of the radical-trapping effect of SA, which leading to promote PP chains to participate in the carbonization process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call