Abstract

The extended light absorption and the prevented charge recombination are crucial for the graphitic carbon nitride (g-C3N4) based photocatalytic materials. Herein, nonstoichiometric molybdenum oxide (MoO3-x) nanorods with oxygen vacancies were synthesized by a hydrothermal method with trace amount of oleylamine, and the Z-scheme two-dimentional (2D)/one-dimentional (1D) g-C3N4/MoO3-x composites were prepared by a facile electrostatic assembling approach. The blue MoO3-x nanorods with oxygen vacancies are loaded uniformly on the g-C3N4 nanosheets. The g-C3N4/MoO3-x composite materials exhibit strong absorption in the visible and near-infrared light regions, and the improved charge separation efficiency through the Z-scheme charge transfer mechanism. The g-C3N4/MoO3-x composite presents a significantly improved photocatalytic hydrogen generation activity with good cycling stability compared with sonicated g-C3N4 nanosheets. The best hydrogen generation activity of 209.2 μmol·h−1 under solar light irradiation and the highest apparent quantum efficiency of 4.4% irradiated at 365 nm are obtained by the g-C3N4/MoO3-x composite with a mass percent of 27.5%, which is 2.63 times of g-C3N4. The weight ratios and the content of oxygen vacancies in the small-size MoO3-x nanorods have a significant influence on the photocatalytic hydrogen performance. Moreover, effective photocatalytic overall water splitting can be achieved with the H2 and O2 evolution rates of 0.755 and 0.368 μmol∙h−1 by the g-C3N4/MoO3-x composite. The novel g-C3N4/MoO3-x composite will have broad prospects in the field of photocatalytic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call