Abstract
Ceramic particles reinforced copper (Cu) matrix composites with good electrical conductivities, superior mechanical and tribological properties show great prospect in electrical contacts, thermal management and sliding bearing materials. A novel Cu matrix composite with low coefficient of friction (COF) and high wear resistance is rationally designed and prepared by hot-press sintering the core-shell structured Cu/graphene oxide (GO)/Cu composite powders and Cu decorated Ti3AlC2 particles to achieve homogenous dispersion of GO in the Cu matrix and good interfacial bonding of Cu matrix and GO and Ti3AlC2. Its tribological performance and corresponding anti-wear alongside with friction reduction mechanisms at room temperature are systematically investigated. The GO-Ti3AlC2 synergistically enhanced Cu matrix composite exhibits lower COF and wear rate than those composites reinforced with GO or Ti3AlC2 alone, for GO and Ti3AlC2 synergistically bear the load and form continuous, compact and lubricating tribo-layer on the worn surface.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.