Abstract
We conducted local anodic oxidation (LAO) lithography in single-layer, bilayer, and multilayer graphenes using tapping-mode atomic force microscope. The width of insulating oxidized area depends systematically on the number of graphene layers. An 800-nm-wide bar-shaped device fabricated in single-layer graphene exhibits the half-integer quantum Hall effect. We also fabricated a 55-nm-wide graphene nanoribbon (GNR). The conductance of the GNR at the charge neutrality point was suppressed at low temperature, which suggests the opening of an energy gap due to lateral confinement of charge carriers. These results show that LAO lithography is an effective technique for the fabrication of graphene nanodevices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.