Abstract

Here, we developed a highly sensitive label-free plasmonic crystal (PC). The PC is composed of two types of nanoperiodic metal structures, nanodiscs and nanohole arrays, fabricated simultaneously by nanoimprint lithography using a nanostructured polymer mold. The PC absorbed light at specific wavelengths based on localized surface plasmon resonance (LSPR). The strongly enhanced electric field was excited by the combined structures of nanodiscs and nanohole arrays; thus, highly sensitive biosensing was possible. The LSPR-based optical characteristics of the PC were analyzed by finite-difference time-domain simulation; the structure (metal layer thickness) was optimized to respond to changes in the surrounding refractive index with high sensitivity. PC-based biosensor chips were prepared by immobilizing anti-human immunoglobulin G, which was successfully detected in the 200 pg/mL to 200 ng/mL range. Our approach introduces an easy and rapid process allowing large-area fabrication of PCs, resulting in a highly sensitive label-free biosensor device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call