Abstract

The study presents a novel electrochemical glucose biosensor based on glucose oxidase (GOx) immobilized on Au@Pd core-shell nanoparticles supported on carboxylated graphene oxide (cGO). The immobilization of GOx was achieved by cross-linking the chitosan biopolymer (CS) including Au@Pd/cGO and glutaraldehyde (GA) on a glassy carbon electrode. The analytical performance of GCE/Au@Pd/cGO-CS/GA/GOx was investigated using amperometry. The biosensor had fast response time (5.2 ± 0.9 s), a satisfactory linear determination range between 2.0 × 10−5 and 4.2 × 10−3 M, and limit of detection of 10.4 μM. The apparent Michaelis-Menten constant (Kapp) was calculated as 3.04 mM. The fabricated biosensor also exhibited good repeatability, reproducibility, and storage stability. No interfering signals from dopamine, uric acid, ascorbic acid, paracetamol, folic acid, mannose, sucrose, and fructose were observed. The large electroactive surface area of carboxylated graphene oxide is a promising candidate for sensor preparation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call