Abstract

In this study, as a novel approach to thin-film solar cells based on tin sulfide, an environmentally friendly material, we attempted to fabricate (Ge, Sn)S thin films for application in multi-junction solar cells. A (Ge0.42 Sn0.58)S thin film was prepared via co-evaporation. The (Ge0.42 Sn0.58)S thin film formed a (Ge, Sn)S solid solution, as confirmed by X-ray diffraction (XRD) and Raman spectroscopy analyses. The open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), and power conversion efficiency (PCE) of (Ge0.42 Sn0.58)S thin-film solar cells were 0.29 V, 6.92 mA/cm2, 0.34, and 0.67%, respectively; moreover, the device showed a band gap of 1.42-1.52 eV. We showed that solar cells can be realized even in a composition range with a relatively higher Ge concentration than the (Ge, Sn)S solar cells reported to date. This result enhances the feasibility of multi-junction SnS-system thin-film solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call